Title: | Compare Supervised Machine Learning Models Using Shiny App |
---|---|
Description: | Implementation of a shiny app to easily compare supervised machine learning model performances. You provide the data and configure each model parameter directly on the shiny app. Different supervised learning algorithms can be tested either on Spark or H2O frameworks to suit your regression and classification tasks. Implementation of available machine learning models on R has been done by Lantz (2013, ISBN:9781782162148). |
Authors: | Jean Bertin |
Maintainer: | Jean Bertin <[email protected]> |
License: | GPL-3 |
Version: | 1.0.1 |
Built: | 2025-02-02 03:56:27 UTC |
Source: | https://github.com/jeanbertinr/shinyml |
This function creates in one line of code a shareable web app to compare supervised classification model performances
shinyML_classification( data = data, y, framework = "h2o", share_app = FALSE, port = NULL )
shinyML_classification( data = data, y, framework = "h2o", share_app = FALSE, port = NULL )
data |
dataset containing one or more explanatory variables and one categorical variable to predict. The dataset must be a data.frame or a data.table and can contain time-based column on Date or POSIXct format |
y |
the categorical output variable to predict (must correspond to one data column) |
framework |
the machine learning framework chosen to train and test models (either h2o or Spark). h2o by default |
share_app |
a logical value indicating whether the app must be shared on local LAN |
port |
a four-digit number corresponding to the port the application should listen to. This parameter is necessary only if share_app option is set to TRUE |
Jean Bertin, [email protected]
## Not run: library(shinyML) shinyML_classification(data = iris,y = "Species",framework = "h2o") ## End(Not run)
## Not run: library(shinyML) shinyML_classification(data = iris,y = "Species",framework = "h2o") ## End(Not run)
This function creates in one line of code a shareable web app to compare supervised regression model performances
shinyML_regression( data = data, y, framework = "h2o", share_app = FALSE, port = NULL )
shinyML_regression( data = data, y, framework = "h2o", share_app = FALSE, port = NULL )
data |
dataset containing one or more explanatory variables and one numeric variable to forecast. The dataset must be a data.frame or a data.table and can contain time-based column on Date or POSIXct format |
y |
the numerical output variable to forecast (must correspond to one data column) |
framework |
the machine learning framework chosen to train and test models (either h2o or Spark). h2o by default |
share_app |
a logical value indicating whether the app must be shared on local LAN |
port |
a four-digit number corresponding to the port the application should listen to. This parameter is necessary only if share_app option is set to TRUE |
Jean Bertin, [email protected]
## Not run: library(shinyML) # Classical regression analysis shinyML_regression(data = iris,y = "Petal.Width",framework = "h2o") # Time series analysis longley2 <- longley %>% mutate(Year = as.Date(as.character(Year),format = "%Y")) shinyML_regression(data = longley2,y = "Population",framework = "h2o") ## End(Not run)
## Not run: library(shinyML) # Classical regression analysis shinyML_regression(data = iris,y = "Petal.Width",framework = "h2o") # Time series analysis longley2 <- longley %>% mutate(Year = as.Date(as.character(Year),format = "%Y")) shinyML_regression(data = longley2,y = "Population",framework = "h2o") ## End(Not run)